Discussion of

"Capital Regulation, Liquidity Requirements and Taxation in a Dynamic Model of Banking"

by G. De Nicolo, A. Gamba, and M. Lucchetta

Hayne Leland University of California, Berkeley CREDIT 2011 Conference, Venice September 2011

The paper examines critical issues in bank regulation:

The Impact of

- Bank closure rules
- Capital constraints
- Liquidity constraintsand combinations of these

On Bank Decisions:

- Bank lending
- Bank capital structure (debt vs. equity)

<u>On Key Metrics:</u>

• Bank efficiency, social value, and default rates

Review of the Model:

1. Uncertainty: Two exogenous sources:

- **Credit shock** Z which affects profitability of loans • Loan income = $Z_t^*\Pi(L_t)$ where $\Pi' > 0$, $\Pi'' < 0$
- Liquidity shock (deposit level) D
 - Deposits insured against default, pay riskless rate r

{*Z*, log *D*} are mean-reverting processes, negatively correlated.

- 2. **Decisions:** Banks choose each period:
 - Amount to lend L_t
 - $\circ~$ Fraction δ matures each period, avg. maturity= 1/ δ 1
 - Costs to reduce loan portfolio ("fire sales")
 - Amount to borrow -B_t (1-period maturity at riskless rate)
 - Unregulated banks default endogenously if E < 0</p>

- 3. **Objective** (both unregulated, regulated banks)
 - Maximize value *E* of discounted equity cash flows
 - Shareholder pay-outs/pay-ins are *residual* cash flow after lending, borrowing decisions
 - Substantial extra costs (30%) to raising equity capital
 - Costs to liquidating loans (4%) through "fire sales"
 - *Unregulated* banks choose *endogenous default* if *E* < 0

4. Constraints (both unregulated, regulated banks)

- A. Fully collateralized borrowing
 - If borrowing, must be able to repay (without further equity issuance) worst state $\{Z_{d\nu}, D_d\}$,
 - Simulation results depend on (arbitrary?) "worst case"
 - One-year, riskfree debt a strong assumption.

Regulation adds **additional constraints**:

B. Closure Rule: Closure if <u>negative (accounting) net worth</u> *K*

If the (end period, or *ex post*) net worth is negative,
 i.e. *ex ante* net worth K_t + *ex post* income_t < 0,
 the bank is reorganized *even if otherwise E > 0 (earlier closure)*

<u>C.</u> Capital Requirement: (restricts *L*, *B* decisions)

- *Ex ante* net worth exceeds fraction k of loans, i.e. $K_t \ge k L_t$ (> 0, i.e. *ex ante* net worth positive).
- Only slightly stricter than Closure Rule if k = 0

D. Liquidity Requirement: (restricts *L*, *B* decisions)

- Total cash available *ex post* /the worst-case cash flow $\geq \ell$ (= 1)
- Again depends on "worst case"
- Constraints C & D can be applied jointly

Approach: A dynamic structural model of banking firm (fixed point solution of Bellman equation)

- Given previous levels of {B, L, K}, banks choose current {B, L} to maximize equity value subject to relevant constraints
 - Different regulations → different borrowing, lending levels
 - Adjustment costs as noted (loan "fire sales", raising new equity)
- Subsequent {D, Z} are realized, net worth K updated, solvency determined, and (if solvent) residual cash flow is paid as dividend (negative dividend = new equity at high cost)
- Can look at {B, L} decisions given previous state variables
 Assumes previous B = 0, D = 2, L = 4.1 → K = 2.1, vs. steady state K = 0.65
- Or, using dynamic simulations, find average or "steady state" of relevant variables. This seems preferred.

Metrics to evaluate decisions

- *Efficiency:* Market value of bank assets, less expected default costs (covered by deposit insurance), less investment in riskless assets (no net benefit from those)
- 2) Social Value: Efficiency plus expected NPV of taxes.

Key Conclusions: given calibrated parameters

- Capital constraints (mild) can *improve* Efficiency, Social Value more loans, less borrowing, and more equity capital vs. non-reg. (though Table 4 shows mkt. lev. of cap-constrained bank higher!?)
- Liquidity constraints reduces lending, efficiency, social value
- Default risk reduced by either or both constraints (to zero!)
 - Question calibration?

Critiques/Suggestions:

- Model doesn't allow loan risk as a choice (except indirectly through loan volume)
 - For example, *capital constraint* could lead to lower lending but possibly higher risk, if decision variable.

"Regulation" is a combination of Closure and other rules—

- Metrics better with Closure and Cap Regs, but less favorable as Cap Reg k rises...
 - Leaves concern that the *closure rule is what creates the important results,* not Cap Regs.
 - Not sure current results "suggest optimal k* > 0"
- Simple static model can't answer, as no continuation

Critiques/Suggestions, Con't.

- Restructuring rules after default somewhat arbitrary
 - Is cost of new capital injection by regulators included in efficiency metrics? (if no default, not relevant...)
 - One might think restructuring by regulators involves less cost than unregulated default.
 - $\circ~$ But same default cost proportion λ

In Sum: An Excellent, Theoretically Solid Structural Model

- Wish list for future:
 - Loan-risk choice
 - Longer term bank debt
 - Multiple investment types with risk weighting
 - Optimize capital requirement k (k* = 0??)
- Before concluding "capital regs are clearly best", examine how estimated benefits depend upon:
 - Closure rule alone (may produce all gains, k > 0 hurts)
 - Default cost assumptions (and is no default realistic?)
 - Examine sensitivity to "Worst case" assumptions